On the Efficient Distributed Evaluation of SPARQL Queries

Damien GRAUX

Supervisor:	Nabil Layaïda
Co-Supervisor:	Pierre GENEVÈS
Funded by:	Datalyse Project

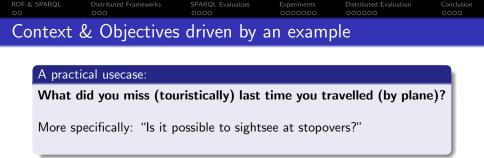
Université Grenoble Alpes, INRIA, LIG

Tyrex Team <tyrex.inria.fr>

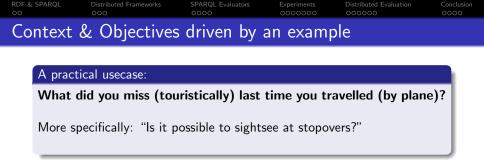
December 15th, 2016

Context &	2 Objectives	driven by ar	n exampl	e	
00	000	0000	0000000	000000	0000
RDF & SPARQL	Distributed Frameworks	SPARQL Evaluators	Experiments	Distributed Evaluation	Conclusion

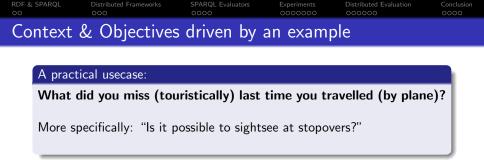
A practical usecase:

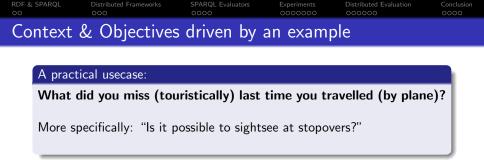

What did you miss (touristically) last time you travelled (by plane)?

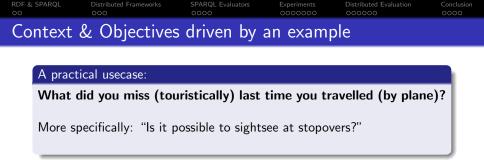
Context	& Objectives	driven by a	an exam	ple	
00	000	0000	0000000	000000	0000
RDF & SPARQL	Distributed Frameworks	SPARQL Evaluators	Experiments	Distributed Evaluation	Conclusion

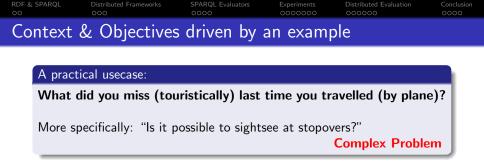

A practical usecase:

What did you miss (touristically) last time you travelled (by plane)?


More specifically: "Is it possible to sightsee at stopovers?"







Finally,...

... Linking the blocks!

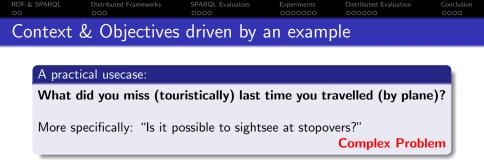
Finally,...

... Linking the blocks!

RDF & SPARQL	Distributed Frameworks	SPARQL Evaluators	Experiments	Distributed Evaluation	Conclusion
OO	000	0000	0000000		0000
Context	& Objectives	driven by	an exam	ple	

Context:

- Large datasets available
- Heterogeneous data


Context &	2 Objectives	driven bv a	n examp	e	
RDF & SPARQL 00	Distributed Frameworks	SPARQL Evaluators	Experiments 0000000	Distributed Evaluation	Conclusion 0000

Context:

- Large datasets available
- Heterogeneous data

Objectives:

- Efficiently request these datasets
- Aggregate results to build complex applications

Finally, ...

... Linking the blocks!

RDF & SPARQL	Distributed Frameworks	SPARQL Evaluators	Experiments	Distributed Evaluation	Conclusion
00	000	0000	0000000	000000	0000
My PhD	topic				

Focuses

- **1** Focusing on evaluating SPARQL queries,
- 2 On large amounts of RDF data,
- 3 In a distributed context.

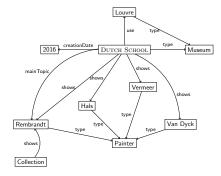
RDF & SPARQL	Distributed Frameworks	SPARQL Evaluators		Distributed Evaluation	Conclusion
00	000	0000	0000000	000000	0000
My PhD	topic				

Focuses

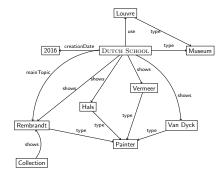
- 1 Focusing on evaluating SPARQL queries,
- 2 On large amounts of RDF data,
- 3 In a distributed context.

Problem

How to design efficient distributed SPARQL evaluators?


RDF & SPARQL	Distributed Frameworks	SPARQL Evaluators	Experiments	Distributed Evaluation	Conclusion
00	000	0000	000000	000000	0000

Section 1

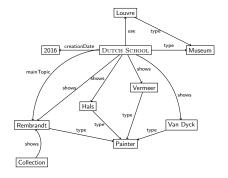

RDF & SPARQL

Resource	 Description 	Framework	[HM04]		
0	000	0000	0000000	000000	0000
RDF & SPARQL	Distributed Frameworks	SPARQL Evaluators		Distributed Evaluation	Conclusion

RDF & SPARQL ●○	Distributed Frameworks 000	SPARQL Evaluators	Experiments 0000000	Distributed Evaluation	Conclusion 0000
Resource	Description	Framework	[HM04]		

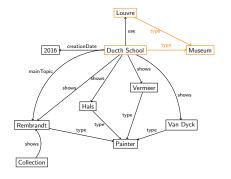
subject	predicate	object
Dutch School	type	Museum
Dutch School	creationDate	2016
Dutch School	use	Louvre
Louvre	type	Museum
Rembrandt	type	Painter
Hals	type	Painter
Vermeer	type	Painter
Van Dyck	type	Painter
Dutch School	mainTopic	Rembrandt
Collection	shows	Rembrandt
Dutch School	shows	Rembrandt
Dutch School	shows	Hals
Dutch School	shows	Vermeer
Dutch School	shows	Van Dyck

Resource	Description	Framework	[HM04]		
00	000	0000	0000000	000000	0000
RDF & SPARQL	Distributed Frameworks	SPARQL Evaluators	Experiments	Distributed Evaluation	Conclusion

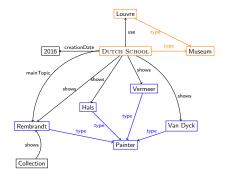

L

H

RDF essentials


- RDF is a W3C standard
- RDF designed to provide, share and exchange datasets
- An RDF graph is a set of RDF triples
- An RDF triple has three components:

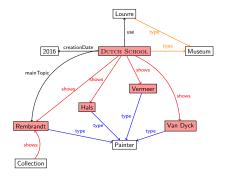
SELECT ?s ?g WHERE { ?s type Museum ?g type Painter ?s shows ?g



?s: Ducth School, Louvre

?s type Museum
?g type Painter
?s shows ?g

?s: Ducth School, Louvre **?g**: Rembrandt, Hals, Vermeer, Van Dyck



?s type Museum ?g type Painter ?s shows ?g

?s: Ducth School, Louvre

?g: Rembrandt, Hals, Vermeer, Van Dyck (**?s,?g**): (Ducth School,Rembrandt), (Ducth School,Hals), (Ducth School,Vermeer), (Ducth School,Van Dyck),(Collection,Rembrandt)

?s type Museum ?g type Painter ?s shows ?g

?s: Ducth School, Louvre
?g: Rembrandt, Hals, Vermeer, Van Dyck
(?s,?g): (Ducth School,Rembrandt), (Ducth School,Hals), (Ducth School,Vermeer), (Ducth School,Van Dyck), (Collection,Rembrandt)

Solution (?s,?g): (Ducth School,Rembrandt), (Ducth School,Hals), (Ducth School,Vermeer), (Ducth School,Van Dyck)

RDF & SPARQL ○●	Distributed Frameworks	SPARQL Evaluators 0000	Experiments 0000000	Distributed Evaluation	Conclusion 0000
SPARQL	Protocol an	d RDF Que	ery Langi	uage [G ⁺ 13]	

Considered SPARQL Fragment

- Basic Graph Pattern (BGP) fragment composed of conjunctions of Triple Patterns (TPs).
- Triple Pattern (TP)

```
SELECT ?s ?g WHERE {
    ?s type Museum
    ?g type Painter
    ?s shows ?g
}
```

- One BGP
- Composed of 3 TPs

RDF & SPARQL	Distributed Frameworks	SPARQL Evaluators	Experiments	Distributed Evaluation	Conclusion
○●	000		0000000	000000	0000
SPARQL	Protocol an	d RDF Que	ery Langi	uage [G ⁺ 13]	

Considered SPARQL Fragment

- Basic Graph Pattern (BGP) fragment composed of conjunctions of Triple Patterns (TPs).
- Triple Pattern (TP)

```
SELECT ?s ?g WHERE {
    ?s type Museum
    ?g type Painter
    ?s shows ?g
}
```

- One BGP
- Composed of 3 TPs

Solutions

- A *candidate solution* satisfies a TP when the replacement of the variables of the TP with their value corresponds to a triple that appears in the RDF data.
- A *query solution* is a candidate solution that satisfies all the TPs of the query.

RDF & SPARQL	Distributed Frameworks	SPARQL Evaluators	Experiments	Distributed Evaluation	Conclusion
00	000	0000	0000000	000000	0000

Section 2

Distributed Frameworks

RDF & SPARQL	Distributed Frameworks	SPARQL Evaluators		Distributed Evaluation	Conclusion
00	000	0000	0000000	000000	0000
MapRed	uce Strategy				

The paradigm

- Parallel processing of massive datasets [DG08]
- A job has two separate phases:
 - 1 *Map* phase which takes k/v pairs, performs computations and returns k/v pairs
 - 2 *Reduce* phase where k/v pairs from the Map are ingested to return a single set of results.
- Intermediate results sometimes need to be shuffled exchanged and/or merge-sorted – across the network to be reduced.

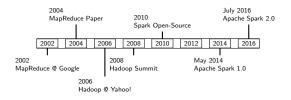
In brief, MapReduce

proposes to not only consider dataset as distributed and fragmented on each machine but also to develop the computation as small blocks (the Map part) which are finally grouped together (the Reduce part).

RDF & SPARQL	Distributed Frameworks	SPARQL Evaluators		Distributed Evaluation	Conclusion
00	000	0000	0000000	000000	0000
Distribut	ed Framewo	rks			

Hadoop

- Framework for distributed systems based on MapReduce
- It is twofold:
 - a distributed file system (including replication)
 - a MapReduce library


Cluster Computing Frameworks

- Provide an interface with implicit data parallelism and fault-tolerance
- Offer a set of low-level functions e.g. map, join, collect...
- For instance: PigLatin, Flink, Spark ...

RDF & SPARQL	Distributed Frameworks	SPARQL Evaluators	Experiments	Distributed Evaluation	Conclusion
	000				
Apache S	Spark[ZCD+1	12]			

Spark in a nutshell

- Master/Worker(s) Architecture
- Various file system sources supported e.g. HDFS
- One of the most active Apache project e.g. 1000+ contributors

RDF & SPARQL	Distributed Frameworks	SPARQL Evaluators	Distributed Evaluation	Conclusion
	000			
Apache S	Spark[ZCD+1	12]		

Spark in a nutshell

- Master/Worker(s) Architecture
- Various file system sources supported e.g. HDFS
- One of the most active Apache project e.g. 1000+ contributors

Resilient Distributed Datasets

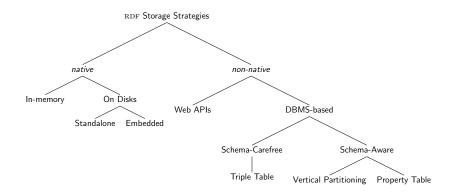
- Distributed object collections
- Split into *partitions* stored in RAM or disks
- Created through deterministic operations
- Fault-tolerant: automatically re-built

RDF & SPARQL	Distributed Frameworks	SPARQL Evaluators	Experiments	Distributed Evaluation	Conclusion
00	000	0000	000000	000000	0000

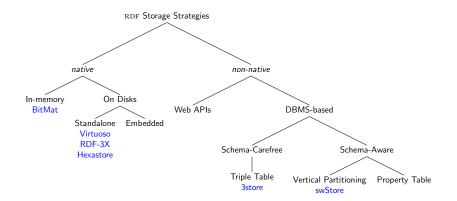
Section 3

SPARQL Evaluators

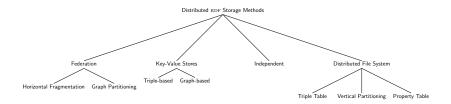
RDF & SPARQL	Distributed Frameworks	SPARQL Evaluators	Distributed Evaluation	Conclusion
		0000		
Jumble of	of Evaluators			

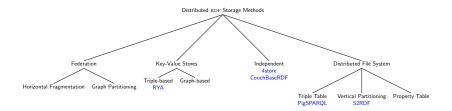

4store CouchBaseRDF BitMat YARS Hexastore CliqueSquare RYA Parliament Virtuoso RDF-3X

• • •


RDF & SPARQL	Distributed Frameworks	SPARQL Evaluators	Experiments	Distributed Evaluation	Conclusion
		0000			
Jumble	of Evaluators				

Some F	Some Previous Surveys						
When?	Who?	What?					
2001	Barstow [Bar01]	Focuses on open-source solutions; and looks at some of their specificities					
2002	Beckett [Bec02]	Updates					
2003	Beckett [BG03]	Focuses on the use of relational database					
		management systems to store RDF datasets					
2004	Lee [Lee04]	Updates					
2012	Faye [FCB12]	Lists the various RDF storage approaches mainly used by single-node systems					
2015	Kaoudi [KM15]	Presents a survey focusing only on RDF in the clouds					


RDF & SPARQL	Distributed Frameworks	SPARQL Evaluators	Experiments	Distributed Evaluation	Conclusion
		0000			
RDF Sto	orage Strateg	ies			


RDF & SPARQL	Distributed Frameworks	SPARQL Evaluators	Experiments	Distributed Evaluation	Conclusion
		0000			
RDF Storage Strategies					

RDF & SPARQL 00	Distributed Frameworks	SPARQL Evaluators ○○○●	Experiments 0000000	Distributed Evaluation	Conclusion 0000
Distribut	ed SPARQL	Evaluator S	State-of-t	he-art Sumr	nary

Observations

- 1 Multiple RDF storage strategies
- 2 Various methods to distribute data and to compute queries

RDF & SPARQL OO	Distributed Frameworks	SPARQL Evaluators ○○○●	Experiments 0000000	Distributed Evaluation	Conclusion 0000
Distribut	ted SPARQL	Evaluator S	State-of-	the-art Sumr	nary

Observations

- 1 Multiple RDF storage strategies
- 2 Various methods to distribute data and to compute queries

How to pick an efficient evaluator?

RDF & SPARQL OO	Distributed Frameworks	SPARQL Evaluators ○○○●	Experiments 0000000	Distributed Evaluation	Conclusion 0000
Distribut	ed SPARQL	Evaluator	State-of-1	the-art Sumr	nary

Observations

- 1 Multiple RDF storage strategies
- 2 Various methods to distribute data and to compute queries

How to pick an efficient evaluator?

Experimental Evaluation!

RDF & SPARQL	Distributed Frameworks	SPARQL Evaluators	Experiments	Distributed Evaluation	Conclusion
00	000	0000	0000000	000000	0000

Section 4

Multi-Criteria Experimental Ranking

RDF & SPARQL 00	Distributed Frameworks	SPARQL Evaluators	Experiments ••••••	Distributed Evaluation	Conclusion 0000
Experim	ental Studies				

When?	Who?	What?
2002	Magkanaraki [MKA+02]	Reviews solutions dealing with on- tologies
2009	Stegmaier [SGD ⁺ 09]	Reviews solutions according to several parameters such as their licenses, their architectures and compares them using a scalable test dataset
2013	Cudré [CMEF+13]	Realizes an empirical study of dis- tributed SPARQL evaluators (na- tive RDF stores and several NoSQL solutions they adapted)

RDF & SPARQL	Distributed Frameworks	SPARQL Evaluators	Experiments	Distributed Evaluation	Conclusion
00	000	0000	000000	000000	0000
Popular	Benchmarks				

Name	SPARQL Fragment
LUBM [GPH05]	BGP
WatDiv [AHÖD14]	BGP
SP ² Bench [SHLP09]	$\begin{array}{llllllllllllllllllllllllllllllllllll$
BolowgnaB [DEW ⁺ 11]	BGP + aggregator (e.g. COUNT)
BSBM [BS09]	BGP + FILTER UNION OPTIONAL + So-
	lution Modifiers $+$ Logical negation $+$
	CONSTRUCT
DBPSB [MLAN11]	Use actually posed queries against dbpedia
RBench [QÖ15]	Generate queries according to considered datasets

RDF & SPARQL 00	Distributed Frameworks	SPARQL Evaluators 0000	Experiments 0000000	Distributed Evaluation	Conclusion 0000
Popular	Benchmarks				

Name	SPARQL Fragment
LUBM [GPH05]	BGP
WatDiv [AHÖD14]	BGP
SP ² Bench [SHLP09]	BGP + FILTER UNION OPTIONAL + Solu-
	tion Modifiers + ASK
BolowgnaB [DEW+11]	$BGP + aggregator (e.g. \ COUNT)$
BSBM [BS09]	BGP + FILTER UNION OPTIONAL + So-
	lution Modifiers $+$ Logical negation $+$
	CONSTRUCT
DBPSB [MLAN11]	Use actually posed queries against dbpedia
RBench [QÖ15]	Generate queries according to considered
	datasets

Contrib.	1 – Experim	ental Comp	arative A		
00	000	0000	000000	000000	0000
RDF & SPARQL	Distributed Frameworks	SPARQL Evaluators	Experiments	Distributed Evaluation	Conclusion

Considered Benchmarks

- LUBM: generated datasets and 14 queries (Q1-Q14)
- WatDiv: generated datasets and 20 queries

Competitors

- Selection criteria: OpenSource, Popular or Recent
- Two types of evaluators:
 - Conventional (with preprocessing): 4store, CumulusRDF, CouchBaseRDF, RYA, CliqueSquare and S2RDF
 - Direct: PigSPARQL

RDF & SPARQL OO	Distributed Frameworks	SPARQL Evaluators	Experiments ○○○●○○○	Distributed Evaluation	Conclusion 0000
Contrib.	1 – Obtaine	d Results			

1 Considering the same dataset, loading times are spread over several magnitude orders

RDF & SPARQL OO	Distributed Frameworks	SPARQL Evaluators 0000	Experiments	Distributed Evaluation 000000	Conclusion 0000
Contrib.	1 – Obtained	d Results			

With the following RDF datasets:

Dataset	Number of Triples	Original File Size
WatDiv1k	109 million	15 GB
Lubm1k	134 million	23 GB
Lubm10k	1.38 billion	232 GB

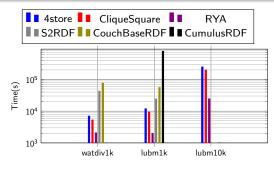


Figure : Preprocessing Time.

Contrib. 1	– Obtained	Results			
00	000	0000	0000000	000000	0000
RDF & SPARQL	Distributed Frameworks	SPARQL Evaluators	Experiments	Distributed Evaluation	Conclusion

- **1** Considering the same dataset, loading times are spread over several magnitude orders
- **2** For the same query on the same dataset, elapsed times can differ very significantly

Contrib	1 Obtaina	d Doculto			
00	000	0000	0000000	000000	0000
RDF & SPARQL	Distributed Frameworks	SPARQL Evaluators	Experiments	Distributed Evaluation	Conclusion

Contrib. 1 – Obtained Results

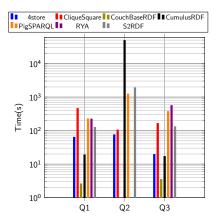


Figure : Query Response Time with Lubm1k (134 million triples).

Q1

SELECT ?X WHERE {
 ?X rdf:type ub:GraduateStudent .

?X ub:takesCourse GraduateCourse0

}

Q2

SELECT ?X ?Y ?Z WHERE {
 ?X rdf:type ub:GraduateStudent .
 ?Y rdf:type ub:Dupersity .
 ?Z rdf:type ub:Dupertment .
 ?X ub:memberOf ?Z .
 ?Z ub:subOrganizationOf ?Y .
 ?X ub:undergraduateDegreeFrom ?Y

}

Q3

SELECT ?X WHERE {
 ?X rdf:type ub:Publication .

?X ub:publicationAuthor AssistantProfessor0

Contrib	1 - Obtaine	d Results			
00	000	0000	0000000	000000	0000
RDF & SPARQL	Distributed Frameworks	SPARQL Evaluators	Experiments	Distributed Evaluation	Conclusion

- Considering the same dataset, loading times are spread over several magnitude orders
- **2** For the same query on the same dataset, elapsed times can differ very significantly
- **3** Even with large datasets, most queries are not harmful *per se*, *i.e.* queries that incurr long running times with some implementations still remain in the "comfort zone" for other implementations

00	000	0000	0000000	000000	0000
RDF & SPARQL	Distributed Frameworks	SPARQL Evaluators	Experiments	Distributed Evaluation	Conclusion

Contrib. 1 – Obtained Results

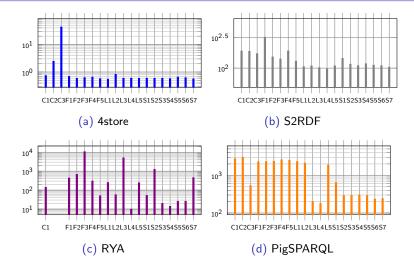
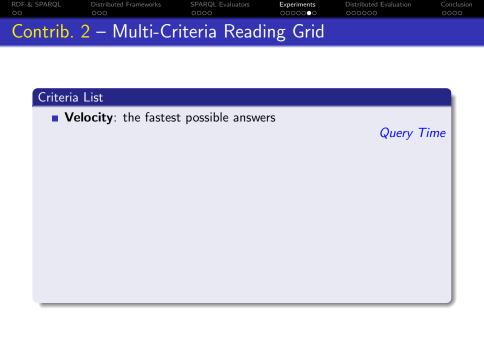


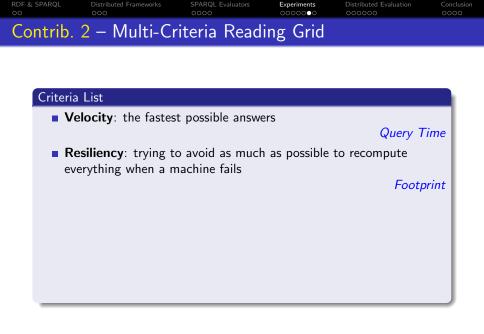
Figure : Obtained results with WatDiv1k.

Contrib. 1	– Obtained	Results			
RDF & SPARQL OO	Distributed Frameworks 000	SPARQL Evaluators	Experiments 000●000	Distributed Evaluation	Conclusion 0000

- Considering the same dataset, loading times are spread over several magnitude orders
- **2** For the same query on the same dataset, elapsed times can differ very significantly
- **3** Even with large datasets, most queries are not harmful *per se*, *i.e.* queries that incurr long running times with some implementations still remain in the "comfort zone" for other implementations

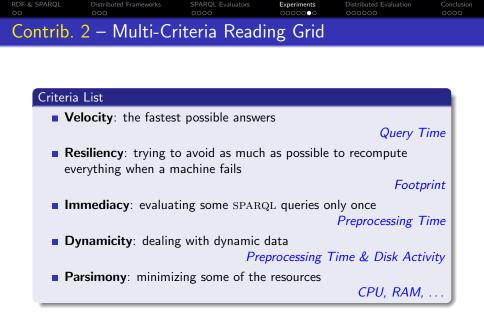
Ok, but...

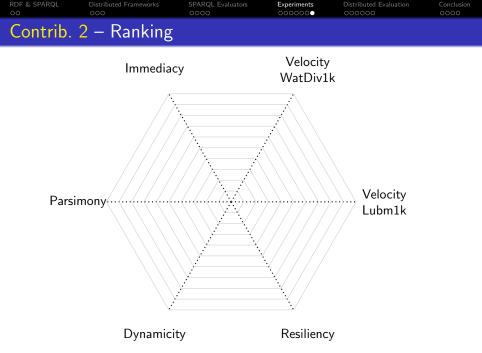

 \ldots how to rank evaluators? \odot

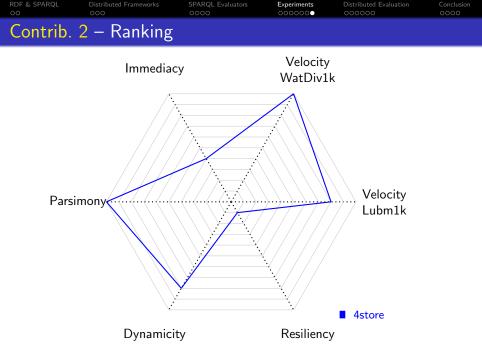

RDF & SPARQL OO	Distributed Frameworks 000	SPARQL Evaluators	Experiments	Distributed Evaluation	Conclusion 0000		
An exter	An extended set of metrics						
Usual r	netrics:						
Ti	me			alv	vays		
Di	isk Footprint			only someti	mes		
_							

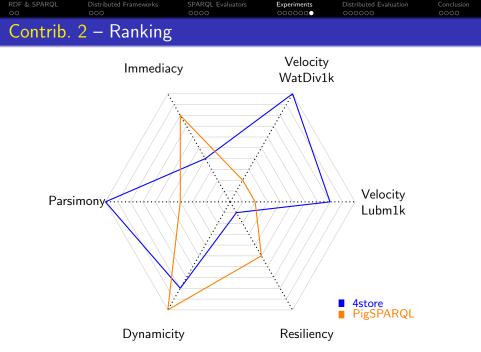
RDF & SPARQL 00	Distributed Frameworks 000	SPARQL Evaluators	Experiments	Distributed Evaluation	Conclusion 0000
An exter	nded set of m	netrics			
Usual r	netrics:				
Ti	me			alv	lays
Di	sk Footprint			only someti	mes
Our ad	ditions:				
	sk Activity			I	new

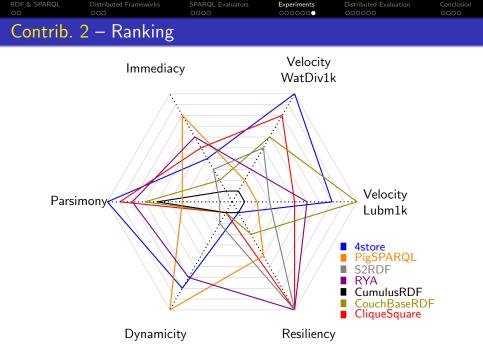
RDF & SPARQL OO	Distributed Frameworks 000	SPARQL Evaluators	Experiments ○○○○●○○	Distributed Evaluation	Conclusion 0000
An exter	nded set of m	netrics			
Usual i	metrics:				
Ti	me			alv	vays
Di	isk Footprint			only someti	mes
Our ad	ditions:				
Di	isk Activity				new
– Ne	etwork Traffic				new


RDF & 00	SPARQL	Distributed Frameworks	SPARQL Evaluators	Experiments ○○○○●○○	Distributed Evaluation	Conclusion 0000
An	exten	ded set of n	netrics			
	Usual m	netrics:				
	Tir	ne			alv	vays
	Dis	sk Footprint			only someti	mes
	Our add	litions:				
	Dis	sk Activity			1	new
	Ne	twork Traffic			1	new
	Re:	sources: CPU, R/	AM, SWAP			new






RDF & SPARQL OO	Distributed Frameworks 000	SPARQL Evaluators	Experiments	Distributed Evaluation	Conclusion 0000
Contrib	. <mark>2</mark> – Multi-Cr	riteria Read	ing Grid		
Criter	ia List				
• \	/elocity : the fastes	t possible answe	ers		
	-			Query T	ïme
	Resiliency : trying to verything when a n		as possible	to recompute	
				Footp	rint
- 1	mmediacy: evaluat	ting some SPAR	QL queries of	nly once	
	-	C		Preprocessing T	ime


RDF & SPARQL 00	Distributed Frameworks 000	SPARQL Evaluators	Experiments 00000●0	Distributed Evaluation	Conclusion 0000
Contrib.	2 – Multi-Cr	riteria Read	ing Grid		
Criteria	a List				
	elocity: the fastes	t possible answe	ers		
				Query T	ïme
	e siliency : trying t erything when a n		as possible	to recompute	
				Footp	rint
In 🛛	nmediacy: evaluat	ting some SPAR	QL queries of	nly once	
	-	-		Preprocessing T	ïme
D	ynamicity: dealing	g with dynamic	data		
		Pre	processing 7	^r ime & Disk Acti	vity
_					

RDF & SPARQL	Distributed Frameworks	SPARQL Evaluators	Experiments	Distributed Evaluation	Conclusion
00	000	0000	000000	000000	0000

Section 5

Efficient Distributed SPARQL Evaluation

RDF & SPARQL 00	Distributed Framev 000	vorks SPARQL Evaluato	rs Experiments 0000000	Distributed Evaluation	Conclusion 0000
Contrib	. <mark>3</mark> – Effic	ient Distribu	ted SPAR(QL evaluation	n
These	e evaluators in	nutshells:			
	SPARQLGX	a distributed SF	PARQL evaluat	or with Apache S	park
	SDE	a direct SF	PARQL evaluat	or with Apache S	park
	RDFHive	a direct evalu	ation of SPAR	QL with Apache	Hive
	Av	vailable from: $$	tps://githu	b.com/tyrex-te	am>

24 / 34

RDF & SPARQL 00	Distributed Frameworks 000	SPARQL Evaluators 0000	Experiments 0000000	Distributed Evaluation	Conclusi 0000
Contrib.	3 – Efficient	Distributed	SPARQI	_ evaluation	
Conside	ering the reading	grid, we have:			
SF	PARQLGX			velocity, resilier	псу
SE	DE	in	nmediacy, dy	ynamicity, resilier	псу
RE	DFHive	immediacy, d	lynamicity, r	esiliency, parsimo	ony
	Availab	le from: <https:< th=""><th>//github.</th><th>com/tyrex-tea</th><th>m> </th></https:<>	//github.	com/tyrex-tea	m>

RDF & SPARQL	Distributed Frameworks	SPARQL Evaluators	Experiments	Distributed Evaluation	Conclusion
OO	000		0000000	○●0000	0000
Details o	of SPARQLG	X			

- Selected storage model
- **2** SPARQL translation process
- **3** Optimization strategies

RDF & SPARQL	Distributed Frameworks	SPARQL Evaluators	Experiments	Distributed Evaluation	Conclusion
00	000	0000	0000000	○○●○○○	0000
Vertical SPARQLGX S	Partitioning	[Abadi <i>et al</i>	2007]		

RDF *predicates* carry the semantic information, thereby:

- Limited number of distinct predicates *e.g.* few hundreds [Gallego *et al.* 2011]
- Predicates rarely variable in queries [Gallego et al. 2011]

RDF & SPARQL	Distributed Frameworks	SPARQL Evaluators	Experiments	Distributed Evaluation	Conclusion
00	000		0000000	○○●○○○	0000
Vertical SPARQLGX S	Partitioning torage Model	[Abadi <i>et al.</i>	2007]		

RDF *predicates* carry the semantic information, thereby:

- Limited number of distinct predicates *e.g.* few hundreds [Gallego *et al.* 2011]
- Predicates rarely variable in queries [Gallego et al. 2011]

Vertical Partitioning

Splitting by predicate and saving two-column files

RDF & SPARQL 00	Distributed Frameworks	SPARQL Evaluators	Experiments 0000000	Distributed Evaluation ○○●○○○	Conclusion 0000
Vertical SPARQLGX S	Partitioning	[Abadi <i>et al</i>	. 2007]		

RDF *predicates* carry the semantic information, thereby:

- Limited number of distinct predicates *e.g.* few hundreds [Gallego *et al.* 2011]
- Predicates rarely variable in queries [Gallego et al. 2011]

Vertical Partitioning

Splitting by predicate and saving two-column files

Advantages

- Natural compression and indexing
- Straightforward implementation

RDF & SPARQL 00	Distributed Frameworks	SPARQL Evaluators 0000	Experiments 0000000	Distributed Evaluation	Conclusion 0000
Vertical	Partitioning	[Abadi <i>et al</i>	. 2007]		
SPARQLGX S	torage Model				

dataset			ture tut			
Dutch School	type	Museum	Dutch School	Museum		
Dutch School	creationDate	2016		Museum		
Dutch School	use	Louvre	Louvre Rembrandt	Painter	creationDate.	text
Louvre	type	Museum			Dutch School	2016
Rembrandt	type	Painter	Hals	Painter _	Dutch School	2010
Hals	type	Painter	Vermeer	Painter		
Vermeer	type	Painter	Van Dyck	Painter	use.txt	
Van Dyck	type	Painter		-	Dutch School	Louvre
Collection	shows	Rembrandt	shows.txt		_	
Dutch School	mainTopic	Rembrandt	Collection	Rembrandt	mainTopic.t	×t
Dutch School	shows	Rembrandt	Dutch School	Rembrandt ⁻	Dutch School	Rembrar
Dutch School	shows	Hals	Dutch School	Hals [–]		
Dutch School	shows	Vermeer	Dutch School	Vermeer		
Dutch School	shows	Van Dyck	Dutch School	Van Dyck	-	

RDF & SPARQL	Distributed Frameworks	SPARQL Evaluators		Distributed Evaluation	Conclusion
00	000	0000	0000000	000000	0000
SPARQL	_ Translation	Process			
SPARQL→Sc	ala				

Dealing with one TP ...

- textFile to access relevant files
- filter to keep matching triples

RDF & SPARQL	Distributed Frameworks	SPARQL Evaluators		Distributed Evaluation	Conclusion
00	000	0000	0000000	000000	0000
SPARQL	_ Translation	Process			
SPARQL→Sc.	ala				

Dealing with one TP ...

- textFile to access relevant files
- filter to keep matching triples

?s type Museum .

 $\begin{array}{l} textFile("type.txt") \\ .filter\{case(s,o)=>o.equals("Museum")\} \\ .map\{case(s,o)=>s\} \end{array}$

RDF & SPARQL	Distributed Frameworks	SPARQL Evaluators		Distributed Evaluation	Conclusion
00	000	0000	0000000	000000	0000
SPARQL	Translation	Process			
SPARQL→Sc	ala				

Dealing with one TP ...

- textFile to access relevant files
- filter to keep matching triples

?s type Museum .

 $\begin{array}{l} \mathsf{textFile("type.txt")} \\ .filter\{\mathsf{case}(s,o) {=} {>} o.\mathsf{equals("Museum")}\} \\ .map\{\mathsf{case}(s,o) {=} {>} s\} \end{array}$

... with a conjunction of TPs

- Translate each TP
- Join them one by one

RDF & SPARQL	Distributed Frameworks	SPARQL Evaluators	Experiments	Distributed Evaluation	Conclusion
00	000	0000	0000000	○OO●O○	0000
SPARQL SPARQL→Sca	Translation	Process			

RDF & SPARQL	Distributed Frameworks	SPARQL Evaluators	Experiments	Distributed Evaluation	Conclusion
00		0000	0000000	○00●00	0000
SPARQL SPARQL→Sca	Translation	Process			

```
tp1=sc.textFile(''type.txt'')
  .filter{case(s,o)=>o.equals(''Museum'')}
  .map{case(s,o)=>s}
  .keyBy{case(s)=>s}
```

RDF & SPARQL Distributed Frameworks SPARQL Evaluators Conclusion C

```
tp1=sc.textFile(''type.txt'')
   .filter{case(s,o)=>o.equals(''Museum'')}
   .map{case(s,o)=>s}
   .keyBy{case(s)=>s}
tp2=sc.textFile(''type.txt'')
   .filter{case(g,o)=>o.equals(''Painter'')}
   .map{(g,o)=>g}
   .keyBy{case(g)=>g}
```

 RDF & SPARQL
 Distributed
 Frameworks
 SPARQL
 Experiments
 Distributed
 Experiments
 Distributed
 Conclusion

 00
 000
 000
 000000
 000000
 000000
 000000

 SPARQL
 Translation
 Process

 SPARQL→Scala
 Spara

```
tp1=sc.textFile(''type.txt'')
   .filter{case(s,o)=>o.equals(''Museum'')}
   .map{case(s,o)=>s}
   .keyBy{case(s)=>s}
tp2=sc.textFile(''type.txt'')
   .filter{case(g,o)=>o.equals(''Painter'')}
   .map{(g,o)=>g}
   .keyBy{case(g)=>g}
tp3=sc.textFile(''shows.txt'')
   .keyBy{case(s,g)=>(s,g)}
```

 RDF & SPARQL
 Distributed
 Frameworks
 SPARQL
 Experiments
 Distributed
 Experiments
 Distributed
 Conclusion

 00
 000
 000
 000000
 000000
 000000
 000000

 SPARQL
 Translation
 Process

 SPARQL→Scala
 Spara

```
tp1=sc.textFile(''type.txt'')
   .filter{case(s,o)=>o.equals(''Museum'')}
   .map{case(s,o)=>s}
   .keyBy{case(s)=>s}
   tp2=sc.textFile(''type.txt'')
   .filter{case(g,o)=>o.equals(''Painter'')}
   .map{(g,o)=>g}
   .keyBy{case(g)=>g}
tp3=sc.textFile(''shows.txt'')
   .keyBy{case(s,g)=>(s,g)}
```

```
bgp=tp1.cartesian(tp2).values
   .keyBy{case(s,g)=>(s,g)}
   .join(tp3).value
```

RDF & SPARQL OO	Distributed Frameworks	SPARQL Evaluators 0000	Experiments 0000000	Distributed Evaluation	Conclusion 0000
Join Orc SPARQL→Sc					

To minimize size of intermediate results, we try:

- 1 Avoiding cartesian product
- 2 Exploiting statistics on data

RDF & SPARQL 00	Distributed Frameworks	SPARQL Evaluators	Experiments 0000000	Distributed Evaluation	Conclusion 0000
Join Ord SPARQL→Sca					

To minimize size of intermediate results, we try:

- 1 Avoiding cartesian product
- 2 Exploiting statistics on data

Selectivity

- Selectivity of an element located at pos is: either its occurrence number at pos if it is a constant or the total number of triples if it is a variable.
- Selectivity of a TP is the min of its element selectivities.

We just sort the TPs of a BGP in ascending order of their selectivities.

RDF & SPARQL OO	Distributed Frameworks	SPARQL Evaluators	Experiments 0000000	Distributed Evaluation	Conclusion 0000
Join Ord					

Initial BGP:

RDF & SPARQL 00	Distributed Frameworks	SPARQL Evaluators	Experiments 0000000	Distributed Evaluation	Conclusion 0000
Join Ord SPARQL→Sca					

Initial BGP:

?s type Museum . ?g type Painter . ?s shows ?g

New BGP:

?s shows ?g ?s type Museum . ?g type Painter

RDF & SPARQL 00	Distributed Frameworks 000	SPARQL Evaluators	Experiments 0000000	Distributed Evaluation	Conclusion 0000
Join Ord SPARQL→Sca					

Initial BGP:

?s type Museum . ?g type Painter . ?s shows ?g

New BGP:

?s shows ?g ?s type Museum . ?g type Painter

```
Associated Scala code:
tp1=sc.textFile(''shows.txt'')
.keyBy{case(s,g)=>s}
tp2=sc.textFile(''type.txt'')
.filter{case(s,o)=>o.equals(''Museum'')}
.map{case(s,o)=>s}
.keyBy{case(s)=>s}
tp3=sc.textFile(''type.txt'')
.filter{case(s,o)=>o.equals(''Painter'')}
.map{case(g,o)=>g}
.keyBy{case(g)=>g}
```

```
bgp=tp1.join(tp2).values
.keyBy{case(s,g)=>(g)}
.join(tp3).value
```

RDF & SPARQL OO	Distributed Frameworks	SPARQL Evaluators	Experiments 0000000	Distributed Evaluation	Conclusion 0000
Direct S	PARQL Eval	uation			

	PARQL Eval		0000000		0000
RDF & SPARQL	Distributed Frameworks	SPARQL Evaluators	Experiments	Distributed Evaluation	Conclusion

SDE (SPARQLGX as Direct Evaluator)

- Directly considering the initial RDF dataset
- Designed to evaluate on single query

RDF & SPARQL	Distributed Frameworks	SPARQL Evaluators	Experiments	Distributed Evaluation	Conclusion
00	000	0000	0000000	000000	0000
Direct SI	PARQL Eval	uation			

SDE (SPARQLGX as Direct Evaluator)

- Directly considering the initial RDF dataset
- Designed to evaluate on single query

RDFHive

- Based on Apache Hive (relational solution on the HDFS)
- Translation of queries into Hive-QL
- Offers the possibility of merging relational and RDF datasets

Direct SPARQL Evaluation

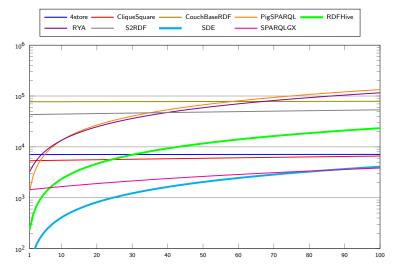


Figure : Tradeoff between preprocessing and query evaluation times (seconds) linear WatDiv.

RDF & SPARQL	Distributed Frameworks	SPARQL Evaluators	Experiments	Distributed Evaluation	Conclusion
		0000	0000000	000000	0000

Section 6

Conclusion & Perspectives

RDF & SPARQL OO	Distributed Frameworks	SPARQL Evaluators	Experiments 0000000	Distributed Evaluation	Conclusion ●○○○
Conclu	ision				
Sum	mary of Contribution	nc			
	Update comparative		rvey	Submit	tted
_					

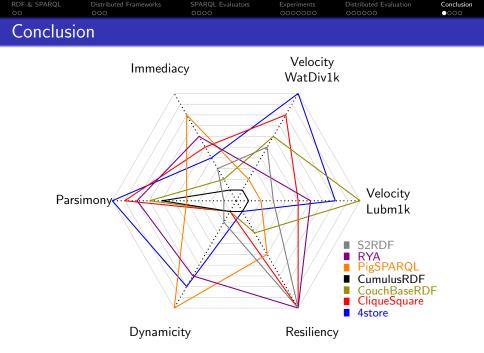
RDF & OO	SPARQL	Distributed Frameworks 000	SPARQL Evaluators	Experiments 0000000	Distributed Evaluation	Conclusion ●○○○
Со	nclusic	n				
	C					
	Summar	y of Contribution	IS			
	1 Upo	date comparative	Cudré et al. su	rvey	Submit	ted
	2 Pro	vide a new readir	ng grid (new set	of metrics)	Submit	ted

RDF & SPARQL 00	Distributed Frameworks 000	SPARQL Evaluators	Experiments 0000000	Distributed Evaluation	Conclusion •••••
Conclusi	on				
Summa	ary of Contribution	IS			
1 U	pdate comparative	Cudré <i>et al.</i> su	rvey	Submi	tted
2 Pi	rovide a new readi	ng grid (new set	of metrics)	Submi	tted

3 Develop several distributed SPARQL evaluators:

Submitted

Reusability


Openly available under the CeCILL license from: <https://github.com/tyrex-team>

RDF & SPARQL OO	Distributed Frameworks 000	SPARQL Evaluators	Experiments 0000000	Distributed Evaluation	Conclusion
Conclusi	on				

Summary of Contributions				
Update comparative Cudré et al. survey	Submitted			
Provide a new reading grid (new set of metrics)	Submitted			
3 Develop several distributed SPARQL evaluators:				
SPARQLGX	ISWC 2016			
SDE	ISWC 2016			
RDFHive				

Reusability

Openly available under the CeCILL license from: <https://github.com/tyrex-team>

RDF & SPARQL Distributed Frameworks SPARQL Evaluators Experiments Distributed 00 000 0000 000000 000000 000000 I - Perspectives: SPARQL Benchmarking Image: Sparge Sparg

Uniform test-suite for dynamicity

Designing a benchmark for the SPARQL UPDATE fragment

Staying up to date

- Adding new evaluators
- Considering other test suites
- Benchmarking on other clusters

Varying the number of nodes

- Validating our results on larger clusters
- New kind of limitation?

Short-Term

Mid-Term

Continuous

ation Conclusion

	33 / 34

Conclusion

RDF & SPARQL Distributed Frameworks SPARQL Evaluators Experiments Distributed Evaluation Co 000 000 000000 0000000 000000 000000 000000 000000 III - Perspectives: SPARQL Evaluators Improving our evaluators On going Extending the supported SPARQL fragment Extending the supported SPARQL fragment

Improving the storage models

Designing criteria-specific evaluators

- Implementing a parsimonious and resilient evaluator
- Developing evaluators in highly dynamic context

Storage-adaptative distributed evaluators

Adapting the idea of Aluç *et al.* [AÖD14] in a distributed context Considering SPARQL query shapes

 \implies Choosing its storage model dynamically!

Long-Term

Mid-Term

Designing SPARQL pipeline

- Using CONSTRUCT to refine existing RDF datasets
- Aggregating several sources into a single one

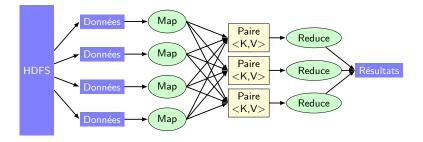
Creating heterogeneous data pipeline

- We provide a prototype for trip planning
- Development of a dedicated language

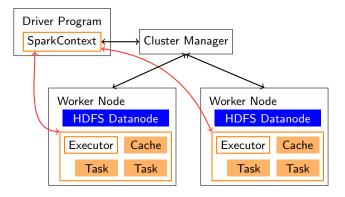
Mid-Term

ISWC 2016

Mid/Long-Term


Thanks for your attention!

Appendices



- Appendices
 - Hadoop
 - Spark
 - Cluster

Architecture

- 1 Resource allocation via cluster manager through master
- 2 Executors acquisition on the cluster nodes
- 3 Code transfert from the application to the executors
- 4 Task transfert to the *executors*

Technical Details

Cluster of 10 nodes with 17GB of RAM each

Dataset	Number of Triples	Original File Size
WatDiv1k	109 million	15 GB
Lubm1k	134 million	23 GB
Lubm10k	1.38 billion	232 GB

References

Güneş Aluç, Olaf Hartig, M Tamer Özsu, and Khuzaima Daudjee. Diversified stress testing of RDF data management systems. In *ISWC*, pages 197–212. Springer, 2014.

Güneş Aluç, M Tamer Özsu, and Khuzaima Daudjee. Workload matters: Why rdf databases need a new design. Proceedings of the VLDB Endowment, 7(10):837-840, 2014.

A Barstow. Survey of rdf/triple data stores. World Wide Web Consortium. Retrieved April, 10:2003, 2001.

Dave Beckett. Scalability and storage: Survey of free software/open source rdf storage systems. Latest version is available at http://www.w3.org/2001/sw/Europe/reports/rdf.scalable.storage.report, 2002.

Dave Beckett and Jan Grant. Mapping semantic web data with RDBMSes. W3C Semantic Web Advanced Development for Europe (SWAD-Europe), 2003.

Christian Bizer and Andreas Schultz. The berlin SPARQL benchmark. *IJSWIS*, 2009.

Philippe Cudré-Mauroux, Iliya Enchev, Sever Fundatureanu, Paul Groth, Albert Haque, Andreas Harth, Felix Leif Keppmann, Daniel Miranker, Juan F Sequeda, and Marcin Wylot. NoSQL databases for RDF: An empirical evaluation. *ISWC*, pages 310–325, 2013.

Gianluca Demartini, Iliya Enchev, Marcin Wylot, Joël Gapany, and Philippe Cudré-Mauroux. Bowlognabench – Benchmarking RDF Analytics. In International Symposium on Data-Driven Process Discovery and Analysis, pages 82–102. Springer, 2011.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters. *Communications of the ACM*, 51(1):107–113, 2008.

David C Faye, Olivier Curé, and Guillaume Blin. A survey of RDF storage approaches. *Arima Journal*, 15:11–35, 2012.

References

W3C SPARQL Working Group et al. SPARQL 1.1 overview, 2013. http://www.w3.org/TR/sparql11-overview/.

Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. LUBM: A benchmark for OWL knowledge base systems. *Web Semantics*, 2005.

Patrick Hayes and Brian McBride. RDF semantics. W3C recommendation, 10, 2004. www.w3.org/TR/rdf-concepts/.

Zoi Kaoudi and Ioana Manolescu. RDF in the clouds: a survey. The VLDB Journal, 24(1):67–91, 2015.

Ryan Lee. Scalability report on triple store applications. Massachusetts institute of technology, 2004.

Aimilia Magkanaraki, Grigoris Karvounarakis, Ta Tuan Anh, Vassilis Christophides, and Dimitris Plexousakis. Ontology storage and querying. Ics-forth Technical Report, 308, 2002.

Mohamed Morsey, Jens Lehmann, Sören Auer, and Axel-Cyrille Ngonga Ngomo. DBpedia SPARQL Benchmark – Performance assessment with real queries on real data. *ISWC*, pages 454–469, 2011.

Shi Qiao and Z Meral Özsoyoğlu. Rbench: Application-specific RDF benchmarking. In *SIGMOD*, pages 1825–1838. ACM, 2015.

Florian Stegmaier, Udo Gröbner, Mario Döller, Harald Kosch, and Gero Baese. Evaluation of current rdf database solutions.

In Proceedings of the 10th International Workshop on Semantic Multimedia Database Technologies (SeMuDaTe), 4th International Conference on Semantics And Digital Media Technologies (SAMT), pages 39–55. Citeseer, 2009.

Michael Schmidt, Thomas Hornung, Georg Lausen, and Christoph Pinkel. $\mathsf{SP}^2\mathsf{Bench:}$ a SPARQL performance benchmark. $\mathit{ICDE},$ pages 222–233, 2009.

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. *NSDI*, 2012.